
MIT Arcturus – 1

RoboBoat 2025: Technical Design Report
Jack Bolte, Janelle Cai, Ved Ganesh, Noah Haefner

Amy Shi, Teagan Sullivan, Toya Takahashi
Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract—Arcturus is debuting a new autonomous sur-
face vehicle (ASV), Fish ‘N Ships, for RoboBoat 2025. After
a season away to build a more maneuverable, modular,
and well-integrated platform, we plan to attempt every
task at competition. While our team has prepared for
every task, we prioritized the navigational challenges to
ensure a vehicle with reliable basic functionalities before
expanding its capabilities. Our design strategy is focused
on adaptability and modularity to create a smooth initial
integration process with room for continuous development.
Following through on our commitment to system integra-
tion and testing, Fish ‘N Ships has been thoroughly tested
in various environments to ensure consistent performance.

I. COMPETITION STRATEGY

This season, our primary objective is to create
a vehicle capable of handling both navigational
and mechanical challenges. With that, our goal is
to attempt every task at competition; however, we
prioritized building a reliable base platform first
and then building up capabilities to maintain a
realistic workload. Guided by this strategic vision,
we concentrated on navigation tasks (Tasks 1, 2,
and 6) to refine and enhance our existing software
stack. Meanwhile, docking and mechanical tasks
(Tasks 3, 4, and 5) received less emphasis, as we
prioritized achieving consistent performance before
introducing additional complexity to the system.

A. Course Approach
Precise robot pose estimation is essential for

navigation. We achieve this by combining GPS data
from the ZED-F9P dual-antenna Real-Time Kine-
matic (RTK) system, which provides centimeter-
level accuracy through error correction with a sta-
tionary onshore base station and IMU data using an
Extended Kalman Filter (EKF) [1]. This fusion en-
sures robust and reliable pose estimation for consis-
tent task execution. For obstacle avoidance in path
planning, we generate an occupancy grid using 3D
point clouds from the HDL-32E Velodyne LiDAR.

Although the ZED 2i Stereo Camera offers high-
resolution depth images, we opted for LiDAR due
to its 360° horizontal field of view, consistent 2 cm
accuracy, and robustness to variations in weather
and lighting conditions.

B. Buoy following tasks: Task 1 and Task 2

Fig. 1: A pair of red and green buoys detected by
our fine-tuned YOLOv8 model.

To achieve buoy following, we identify the lo-
cations of sequential red and green buoy gates.
Buoy colors and types are detected using a fine-
tuned YOLOv8 model, chosen for its real-time
speed and accuracy [2]. The positions of the buoys
are extracted from LiDAR data using Euclidean
clustering, and their locations are projected onto the
camera feed using a calibrated extrinsic transforma-
tion and the camera’s intrinsic matrix. Finally, buoys
detected by the camera and LiDAR are matched by
pairing those that maximize the total Intersection
over Union (IoU).

Once we localize the buoys, we iteratively grow
a sequence of buoy gates by repeatedly adding the
buoy pair closest to the end of the current sequence.
The boat then follows a series of calculated GPS



MIT Arcturus – 2

waypoints between the buoy gates, navigating along
a discretized, obstacle-free path calculated by our
A* path planner, which uses the 2D occupancy grid
produced by our mapping system.

C. Task 3: Docking
To execute the docking task, we designed a

state machine to navigate the two-sided dock,
ensuring that the vehicle docks in the correctly
labeled area. The vehicle can be in one of six
states: approaching, checking_camera,
shifting, orbiting1, orbiting2, and
docking. During the approaching state,
the dock location is determined by matching a
pre-existing point cloud template with the LiDAR
data using point cloud registration. If the current
dock is occupied by a vessel or does not match
the correct color or shape (determined using our
YOLOv8 model), the vehicle transitions to either
the shifting or orbiting states. In the
shifting state, the boat moves to check the next
dock on the same side, while in the orbiting
state, it switches to the other side of the dock.
Once an appropriate dock is located, the vehicle
enters the docking state, where it navigates to
the center of the dock using our path planner.

D. Task 4: Speed Challenge
The Speed Challenge is a lower-priority task for

us, but the point bonus for completing all tasks
makes it more significant. Given the point values of
the Speed Challenge components and the slightly
constrained time frame, we have decided to focus
solely on the stationkeeping subtask. Once a set of
four rectangular buoys is located after completing
the buoy-following tasks, the vehicle uses its PID
controller to maintain station at the holding bay until
the LED turns green. To detect the color change,
we utilize color segmentation to detect when a
rectangular patch of pixels changes color, which
offers the advantage of not requiring training data,
unlike learning-based approaches.

E. Task 5: Object and Water Delivery
The Object and Water Delivery task is completed

in between other tasks while target vessels are
within proximity. If faraway vessels are identified
during other tasks, their locations are recorded. The

vehicle will then navigate to them at the end of its
current task, provided the total path length does not
exceed a specified threshold. A separate webcam
mounted on the turret is used to detect the vessel’s
shape, with the centroid of the shape serving as the
target for turret aiming using a PID controller.

II. DESIGN STRATEGY

After our last competition season, we recognized
the need to place a greater emphasis on system
integration and testing. To ensure seamless opera-
tion across all subsystems, we specified a list of
design requirements for our vehicle, prioritizing a
lightweight and easily transportable design to make
testing easier. Adapting our previous boat to meet
these requirements proved infeasible. As a result,
we decided to build a new vehicle, focusing on
maneuverability, modularity, and testability to better
meet our goals.

A. Hulls

Catamarans are optimal in the context of the
RoboBoat competition over monohulls for their high
stability and low drag characteristics [3]. The hulls
are symmetric for better maneuverability during the
docking and navigation tasks. To increase meta-
centric height and therefore stability, the batteries
were placed within the hulls and protected by plastic
containers [4].

The hulls went through two major iterations.
The first pair of hulls weighed 36 lbs, exceeding
design specifications by 105%. To reduce weight,
we shortened the hulls from 1.8m to 1.2m, reduced
fiberglass layers, and employed vacuum bagging
technology, decreasing total weight to 12 lbs.

Fig. 2: Top to bottom: new hulls and old hulls. Note
the cavity in each hull for holding battery boxes.



MIT Arcturus – 3

B. Propulsion

To optimize maneuverability, four T200 thrusters
are mounted in a vectored configuration, making
the boat holonomic. However, since this is the first
year using this system, experimentally fine tuning
the angle of the thrusters was necessary to find the
best forward and side to side speeds. Because of
this, a piece of detachable marine plywood is sand-
wiched between the hulls and thrusters, which allow
the thrusters to be mounted in 22.5° increments.
To protect the protruding thrusters from damage,
thruster cages were designed to be both lightweight
and durable (see Appendix B).

Fig. 3: CAD of thruster vectored configuration. Each
T200 thruster can be manually rotated and mounted
to the hulls at 22.5° increments. Red arrows indicate
direction of thrust on the water.

C. EE box and Sensor Mast

The ASV’s electronics enclosure (EE box) is
designed to be (1) lightweight, (2) debuggable, (3)
waterproof, (4) breathable (to prevent overheating),
and (5) compact. While off-the-shelf options from
Pelicase, Blue Robotics, Condition 1, and Tup-
perware were considered, all candidates failed to
meet at least one of the five design requirements.
Therefore, the team designed a custom EE box
using primarily 1/8” plywood and a Polyurethane
Laminate (see Appendix C). These choices resulted
in an 86% increase in container volume/weight over
the leading off-the-shelf option (from Condition 1)
and better breathability. The EE box features a
base height to lid height ratio of 1:3 and elevated

pegboards, allowing easy access to electronics from
both above and below. Removable faceplates enable
easy addition of new passthroughs as the ASV’s
electronics payload evolves. Inset faceplate gaskets,
an H-gasket between the base and the lid, and sealed
seams waterproof the EE box to a tested depth
of several cm–well beyond design specifications.
Finally, a center pole was added to prevent water
pooling on the lid and double as a self-locating pin
for easy lid to base alignment.

Fig. 4: EE box CAD. (1) short base (2) elevated
peg boards (3) removable faceplates (4) H gasket
and (5) center pole. Lid not pictured.

The LiDAR and ZED are mounted on an alu-
minum sensor mast to increase range of vision.
Vibration-damping mounts, adjustable levels, and
multiple points of contact securing the sensor mast
to the deck and aluminum beams ensure that the
sensors are level and experience minimal vibrations.

D. Mechanisms (Ball Launcher, Turret, Water Can-
non)

The mechanism for delivering balls and water
to the vessels around the course consists of three
subsystems: the turret, the ball launcher, and the
water cannon. By integrating these subsystems into
a single assembly, we create a reliable method for
aiming at targets.

1) Turret: The objective this year was to create
a lightweight, precise turret that could withstand
both the weight of the ball launcher and water



MIT Arcturus – 4

Fig. 5: Sensor Mast CAD. (1) LiDAR (2) ZED (3)
height adjustable vibration-damping mounts.

Fig. 6: Full Mechanism assembly. (1) Gear turret
system (2) Ball launcher (3) Water cannon

cannon. Initially, a belt-driven turn-table riding on
ball bearings was used for rotation. However, testing
showed that the bearings would get stuck, so the
bearings and belt were removed, and acrylic gears
were used to drive the rotation.

2) Ball Launcher: The ball launcher is designed
to achieve a velocity high enough to minimize the
effects of parabolic motion, simplifying the aiming
process (see Appendix D). The launcher consists of
two inverted curved edge wheels rotating in opposite
directions, powered by a pair of 2000 rpm motors.
The wheels slightly compress the balls to maximize
contact and launch them in a straight path without

spin. A lead screw mechanism feeds the balls into
the wheels.

3) Water Cannon: The water delivery system
features a pump that directs water through tubes
that run underneath the ball launcher. This ensures
that the water is delivered at the same angle and
incline as the launcher. The pump delivers a flow
rate of 271.2 cm3/s with a 1.27 cm outlet diameter
(see Appendix E). Assuming constant volume-flow
rate, we designed a resin-printed, replaceable nozzle
with a reduced outlet diameter of 0.635 cm. This
nozzle allows the water stream to travel up to 7.36m
without manually altering the turret’s angle.

E. Electrical System

In previous years, our electrical system proved
functional but was bulky, unreliable, and difficult to
fix. To mitigate these issues, we designed custom,
modular printed circuit boards (PCBs) that imple-
ment the majority of the boat’s electrical function-
ality.

1) System Overview: Our system consists of four
primary boards. The Central Hub distributes power
and signals to all peripheral boards, and it provides
the USB interface to the onboard computer. The
Buck Board converts power from the 6S battery with
19V, 12V, 5V, and two adjustable buck convert-
ers. It provides overvoltage, short-circuit, and ther-
mal protections. The Battery Management System
(BMS) protects the batteries from damage. Each of
the three batteries on the boat, two 4S batteries for
the thrusters and one 6S battery to power the rest of
the boat’s systems, have their own BMS. The E-Stop
communicates the emergency stop information, as
well as commands to manually drive the boat. See
Appendix F for the electrical system diagram.

2) Battery Management System (BMS): The
BMS monitors battery health and performs battery
shutoff. It protects against undervoltage, overcur-
rent, and cell imbalance. We chose to use a 200A
NFET transistor on the BMS to implement battery
shutoff and E-Stop, preventing the need for heavy
and power-hungry contactors. The transistor gate is
pulled down, so the system will fail safe in the case
of control system failure. The board was tested up
to 70A of load current, which is well in excess of
our expected maximum operating current of 40A.

3) E-Stop Implementation: The previous, WiFi
based E-Stop experienced problems with reliability



MIT Arcturus – 5

and range. Instead, we chose to use LoRa on the 915
MHz ISM band to communicate E-Stop and manual
boat control for its long range and high noise immu-
nity. E-Stop can be triggered by three conditions: 1)
the E-Stop button on the boat is pressed, 2) the E-
Stop button on the shore-side transmitter is pressed,
or 3) the E-Stop loses connection with the shore-
side transmitter for over one second. When any of
these conditions occur, a signal is sent to both BMS
boards on the 4S batteries, which then cut off the
output power.

F. Software System Architecture
This competition cycle, the autonomy team

prioritized modularity and reproducibility in our
code, enabling rapid development and iteration.
To achieve this, we organized our code base,
all_seaing_vehicle, into several Robot Op-
erating System (ROS) 2 packages, covering navi-
gation, perception, controls, and task-specific func-
tionality. This modular approach allows us to contin-
ually reuse and refine core features such as naviga-
tion and perception across competition cycles, while
easily swapping out task-specific code. Additionally,
we decided to transition away from another middle-
ware, Mission Oriented Operating Suite (MOOS-
IvP), due to two main factors: 1) the steep learning
curve of its C++ implementation and features, and
2) the added complexity of the bridge between
MOOS and ROS, which unnecessarily complicated
the overall system architecture.

In addition to utilizing ROS nodes for contin-
uous communication between processes through
a publisher-subscriber pattern, we implemented a
hierarchy of ROS actions to manage task execu-
tion and vehicle commands (Fig. 7). This request-
response model allows for continuous feedback and
the ability to cancel or abort tasks as needed. The
action servers are organized in three layers, with
each layer sending requests to deeper layers:

• Task manager: A ROS node responsible for
deciding which task the vehicle is currently
performing based on the current state.

• Layer 1 – Task execution: Action servers re-
sponsible for responding to high-level requests
to execute RoboBoat tasks such as Follow the
Path and Docking.

• Layer 2 – High-level commands: Commands
requiring additional calculations before re-
questing Layer 3 commands. Examples include

navigating to a target point while avoiding
obstacles and completing the process of aiming
at a target and shooting.

• Layer 3 – Core commands: Low-level com-
mands for fundamental control of the boat such
as waypoint following, station keeping, moving
the turret, and firing water/racquetballs.

Fig. 7: all seaing vehicle’s ROS 2 action server
hierarchy with the task manager node responsible
for sending requests to layer 1.

Underneath Layer 3, we have a network of pub-
lishers and subscribers for handling state estimation,
map generation, object detection, and hardware in-
terfacing. See Appendix G for more details.

III. TESTING STRATEGY

From past experience, we knew that it was im-
portant to not have software testing bottle-necked
by hardware development, and that frequent testing
was crucial to developing a reliable system. Thus,
we devised a plan to test our overall system both
in simulation and physically on our sister test boat
Minerva, which has a similar sensor and propulsion
system to Fish ‘N Ships, while the new vessel was
under construction.

Fig. 8: Gazebo simulation testing.

To facilitate frequent testing of our autonomy
stack, we rely on the Virtual RobotX (VRX)
Gazebo simulator provided by the Open Source
Robotics Foundation. In addition to the default



MIT Arcturus – 6

VRX worlds, we developed custom Simulation De-
scription Format (SDF) files and Python scripts to
model RoboBoat tasks such as Navigation Channel,
Follow the Path, and Docking. While the simulation
provides an idealized environment, it enables rapid
prototyping and code validation without interfering
with the mechanical team’s hardware design pro-
cess.

Fig. 9: Physical testing on the Charles River.

We conducted various physical tests to gain a
more accurate representation of the competition
environment and evaluate components such as sen-
sors and communication systems that often perform
differently than in simulation. To ensure consistent
progress, we established a timeline to test the boat
physically at least once every two weeks. This
schedule provided time to iterate on unreliable sys-
tems while keeping us accountable to deadlines. For
each test, we outlined specific objectives and goals,
documenting the results to better plan for future
milestones. We began with small-scale tests focused
on isolated components (see Appendix B and C) and
gradually progressed to validating the entire system
through the completion of full tasks (see Appendix
A).

We conducted small-scale tests at the MIT Sea
Grant test tank to verify sensor and thruster func-
tionality. Additionally, we performed system inte-
gration tests to ensure the mechanical, electrical,
and software systems were working together as
intended. These focused tests allowed us to validate
design changes efficiently, avoiding the need for
full-scale tests, which are more time-consuming and
require additional planning.

Large-scale indoor physical tests were conducted
at the MIT Z-Center swimming pool. Due to the
lack of a reliable GPS signal indoors, we used

Nav2’s Adaptive Monte Carlo Localization algo-
rithm [5], [6] on a pre-built map using Cartogra-
pher [7] for accurate localization of the vehicle.
Although GPS systems could not be tested in this
environment, we focused on isolating and testing
tasks such as Follow the Path, Docking, and the
Speed Challenge. These indoor tests proved espe-
cially valuable during the harsh winter months when
outdoor testing was not feasible.

Finally, full-scale tests were conducted at the
Charles River, where we extensively tested GPS,
WiFi, and LoRa systems to ensure accurate robot
localization and reliable communication between
the shoreside and the boat. Beyond isolated tests, we
evaluated the autonomy stack’s ability to complete
a sequence of tasks, simulating the competition
environment. Outdoor testing also allowed us to col-
lect training and testing data under various weather
conditions, further improving the robustness of our
system.

IV. ACKNOWLEDGMENTS

Arcturus would like to thank all of our sponsors
for making this incredible project possible for our
team through their support in terms of design re-
views/guidance and funding: Saronic, MIT Mechan-
ical Engineering Department, MIT Edgerton Center,
Cadence, Robosys, The COOP, Yamaha, Cambridge
Science Fund, and MIT OME.

We would also like to acknowledge those who
donated materials/tools or lent us testing facilities:
Formlabs, PTC, MIT Sea Grant, MIT Architecture
and Design (MAD) Lab, N51 Edgerton Center Team
Shop, Edgerton 6C Student Shop, and 4-409 Edger-
ton Student Project Laboratory.

Finally, We would like to make a special ac-
knowledgment to our mentors whose guidance and
support have been instrumental to our growth. We
are grateful for Dr. Andrew Bennett’s technical and
administrative guidance throughout the years. An-
other mentor instrumental to our growth is Audrey
Chen, who has provided helpful design feedback
and general team guidance.

REFERENCES

[1] T. Moore and D. Stouch, “A Generalized Extended Kalman
Filter Implementation for the Robot Operating System,” Inter-
national Conference on Intelligent Autonomous Systems (IAS),
2013.



MIT Arcturus – 7

[2] G. Jocher, A. Chaurasia, J. Qiu, “Ultralytics YOLOv8,” 2023.
[Online]. Available: https://github.com/ultralytics/ultralytics.

[3] P. Couser, “An Investigation Into the Performance of High-
Speed Catamarans in Calm Water and Waves,” Mar. 1996.

[4] J. Mégel and J. Kliava, “Metacenter and ship stability,” Amer-
ican Journal of Physics, vol. 78, no. 7, pp. 738–747, Jul. 2010,
doi: 10.1119/1.3285975.

[5] S. Macenski, F. Martin, R. White, J. Clavero, “The Marathon
2: A Navigation System,” IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), 2020.

[6] S. Macenski, T. Moore, DV Lu, A. Merzlyakov, M. Ferguson,
“From the desks of ROS maintainers: A survey of modern
& capable mobile robotics algorithms in the robot operating
system 2” Robotics and Autonomous Systems, 2023.

[7] W. Hess, D. Kohler, H. Rapp, and D. Andor, “Real-Time
Loop Closure in 2D LiDAR SLAM,” Robotics and Automation
(ICRA), 2016.

APPENDIX A
TEST PLAN AND RESULTS

Our team had physical, simulation, and bench
tests to allow independent development of sub-
systems. To do so, the workload is broken down
into three main sub-teams: mechanical, electrical,
and autonomy. From there, we have even smaller
project teams working on designing, prototyping,
and testing subsystems of Fish ‘N Ships. Every
week, we have system integration meetings where
we check in on each sub-team’s progress and make
adjustments to our testing plan as needed.

Subsystem: every subsystem has a design time-
line as follows: 1-2 weeks for design/research, 1
week for design review and material lead time, 1-2
weeks for prototyping, 1 week for integration, and
reiteration as needed. Please see detailed examples
of our subsystem testing in Appendices B and C.

Full-system: after independent subsystems are
tested, we integrate them onto the main vessel and
deploy the vessel to ensure that the components
are behaving as expected. Our full system tests
follow the Testing section of the Gantt chart timeline
in Appendix H, and more details are included in
the Simulation Tests and Physical Tests subsections
below.

A. Simulation Tests
Simulation testings were done through the VRX

Gazebo simulator as mentioned in the Testing Strat-
egy section of the paper. For these tests, we needed
a Linux based computer to run the simulations.
Thankfully, we were able to obtain a dual booted
Toughbook laptop borrowed from the MIT Sea
Grant lab in order for all the autonomy members

to run the simulation. There are far fewer safety
factors/risks to account for since we run these sim-
ulations in the laboratory space. The Autonomy sec-
tion of the Gantt chart (see Appendix H) describes
the simulation testing schedule, where each system
is developed over the course of two to three months.
The objective of these tests were to validate that the
code is working as intended, and the simulations
were run continuously throughout the development
process to verify that the subsystems were working.

B. Physical Tests

Physical tests allowed us to verify our design,
ensure progress, and integrate independent com-
ponents. Since our team built a new vehicle and
redesigned all of the hardware, most of the base
platform was developed independently. Once the
base platform was integrated, we had biweekly
full system tests that followed the schedule of the
Testing section of the Gantt chart in Appendix
H. To simulate the competition environment, we
tested outdoors at the MIT Boathouse, where a
dock was available by the Charles River for easy
deployment of Fish ‘N Ships. However, other groups
on campus also utilized this space and it was only
available on the weekdays, so we often had to
work around conflicting schedules. To replicate the
competition environment for practice, we built task
props such as the dock and the delivery vessels.
We also reused Polyform buoys from previous years
for object detection testing. There were significantly
more risks when it came to physical testing because
we needed to make sure there were enough helpers
for carrying the boat and that we were following
safety measures in working with the river. To ensure
the safety of our members, we coordinated tests with
the boathouse manager to ensure the weather was
appropriate and that safety protocols at the docks
were followed. When the weather posed a severe
risk for hypothermia and frostbite, we moved our
tests indoors to the pools at the MIT Z-center to
ensure the safety of our members. Below, we will
describe the various stages of our full system testing
and the corresponding objectives and results.

Early Stage — Completion of Fish ’N Ships

Objectives: We started testing our new vessel as
soon as it was completed. During this stage, we



MIT Arcturus – 8

mainly focused on achieving teleoperation function-
ality with the new vehicle and adjusting the vessel
to ensure a desired center of mass and thruster
positions.

Results: We began testing our new vessel im-
mediately after its completion, focusing initially on
achieving teleoperation functionality and adjusting
the vehicle to optimize the center of mass and
thruster positions.

During this phase, we encountered several chal-
lenges:

• The customized electronics box was difficult to
access, complicating debugging efforts.

• The sensor mount was unstable, hindering the
effective use of the camera and LiDAR.

• Water accumulated in the cavities between the
battery box and the hulls.

To remedy these issues, we iterated on the design
of the EE box and sensor mount, and we water-
proofed the cavities to prevent water pooling in
future tests.

Mid-stage — Fish ’N Ships with New Features
Objectives: After the initial round of tests, Fish

‘N Ships had new features integrated in terms of
the electronics and the updated mechanical parts.
Our objective for these tests was to validate that the
new electronics function as expected, the updated
mechanical components met our requirements, and
the GPS and waypoint following portions of auton-
omy worked.

Results: We were able to successfully set up
the new GPS system after a few tries, and most
of the electronics behaved as expected. The newly
designed electronics box was a lot more accessible.
However, like most of our tests, unexpected issues
arose:

• One of the tests happened on a windy day, and
our vehicle was a lot more soaked than usual.
We realized that we needed to better waterproof
our connectors into the EE box.

• The sensor mount was still not as stable as we
expected.

Late-stage — Competition Preparation
Objectives: Our goal was to simulate the compe-

tition course to practice the tasks, test the perception
system of our autonomy stack, and integrate the
latest iteration of the sensor mount.

Results: We were able to record ROS bags for
the autonomy team to test the perception system
on. Some unexpected problems were:

• With more nodes running for our software
functions, our onboard computer unexpectedly
crashed.

• Our batteries drained a lot faster than expected
even though the current the electronics system
was drawing seemed to be reasonable.

APPENDIX B
THRUSTER CAGES

The initial cages weighed 1.9 lbs per cage and to-
gether contributed 10% of the ASV’s overall weight.
To reduce weight, two alternative designs were
proposed; the first design weighs 0.6 lbs per cage
and the second weighs 1.04 lbs per cage, both were
printed in Formlabs Tough 2K resin. Onshape FEA
showed the first design deflected by approximately
0.0001 in, under loads equivalent to the boat being
dropped from 1m. Physical tests also supported this,
as each cage could support over 150 lbs. Given these
results, the first design is optimal considering its
proven functionality and lower weight. The redesign
decreased cage weight by 68.4%; the cages now
contribute only 4% of overall vessel weight.

Initial Design
(1.9 lb each)

Design 1
(0.6 lb each)

Design 2
(0.9 lb each)

Fig. 10: Different iterations of the Thruster Cages.

APPENDIX C
EE BOX LID DESIGN

To calculate the maximum load on the walls of
the EE box lid, we calculated drag force on the box



MIT Arcturus – 9

in 5m/s gusts:

Fd =
1

2
· cd · A · ρ · v2rel

where
Fd = drag force,
cd = drag coefficient ≈ 1.05,

A =⊥ Area of Lid = 0.14m2 along long face,
ρ = density of air at STP = 1.2 kg/m3,

vrel = relative velocity of flow ≈ 7m/s.

Fd =
1

2
· 1.05 · 0.14m2 · 1.2 kg

m3
· 49 m2

s2
= 4.3N

The cross members make analytical methods diffi-
cult so we used Onshape’s FEA tool:

Fig. 11: FEA of EE box lid under 5m/s gusts.

With a safety factor >3.5, the lid is well within
the specification.

APPENDIX D
BALL LAUNCHER CALCULATIONS

To simplify aiming, the launcher was designed
to hit the 0.584m tall target from a maximum
distance of 3m without adjusting launch angle. By
measuring the time to travel 1.82m over 5 trials, we
found that the muzzle velocity of a launched ball is
7.15m/s. Various launch angles were simulated to
determine how many targets would be hit within a
set distance.

The optimal angle is 28.6◦. This angle exceeds the
3m requirement and peaks at the top of the target,

Fig. 12: Different ball trajectories depending on an-
gle. Air resistance neglected. Black lines represent
target height.

ensuring that any launch between 0 and 3m will
not overshoot the 0.584m tall target. As long as the
boat shoots within this range and in the correct x-y
direction, it will hit the target.

APPENDIX E
WATER DELIVERY CALCULATIONS

Our pump maintains a volumetric flow rate of
273.4 · 10−6 m3/s. To determine the appropriate
nozzle size to reach smin = 3m, we utilized the
formula for projectile motion:

s =
v2 sin(2θ)

g
,

s = horizontal range,

v = fluid flow
(
4Q

πd2

)
,

g = gravitational acceleration (9.81m/s2),

θ = initial angle (45° for maximum range).

Substituting v =
(

4Q
πd2

)
into the range equation

gives:

s =
16Q2

π2d4g
.

Using this formula and the given flow rate, and
assuming that the pressure gradient along the tubing
is negligible, we have found that a nozzle outlet
diameter of d = 1/4 ” (6.4 · 10−3m) will reach d =
7.36m.



MIT Arcturus – 10

APPENDIX F
ELECTRICAL SYSTEM DIAGRAM

Fig. 13: Electrical system overview. Custom boards are indicated in yellow.

APPENDIX G
SOFTWARE SYSTEM ARCHITECTURE

Fig. 14: Software System Architecture.



MIT Arcturus – 11

APPENDIX H
ARCTURUS TEAM GANTT CHART

Fig. 15: The team Gantt chart consists of subsystem projects, organized by the respective sub team. The
long bars that span horizontally indicate the relative timeframe for the design, prototype, and test of the
subsystem.


